Отзывы о школе «Школа Data Science»
Добавить отзыв

3.9
17 отзывов
Положительные
Нейтральные
Отрицательные
Год основания
2019
Студентов
150000+
Преподавателей
35+
Курсов
13
Сайт онлайн-школы – karpov.courses
Показать все курсы школы Karpov.Courses
Сайт онлайн-школы – karpov.courses
Похожие школы
Сортировать по
Популярности, по убыванию
Популярности, по убыванию
Популярности, по возрастанию
Дате, сначала новые
Дате, сначала старые
Оценке, сначала негативные
Оценке, сначала позитивные
Очень интересный курс
3/5
Очень интересный курс. Блок по страхованию немного сыроват:
1. Хотелось бы изучить пример успешных моделей в страховании, а не модели, которые ничего не предсказывают.
2. Для ДЗ 8 нужны дополнительные материалы по hyperopt для мультиклассификации.
3. Авторы ДЗ 8 как-то забыли, что в нашем курсе вообще не было мультиклассификации, а преподавателю это стало известно в конце урока 8 при выдаче ДЗ. Часть материалов о мультиклассификации выложили оперативно, а чтобы получить схема запуска hyperopt для мультиклассификации пришлось убить кучу времени на поиск информации в интернете … и только через неделю после урока удалось получить полный комплект информации.
Дальше хотелось бы учиться без таких ляпов.
1. Хотелось бы изучить пример успешных моделей в страховании, а не модели, которые ничего не предсказывают.
2. Для ДЗ 8 нужны дополнительные материалы по hyperopt для мультиклассификации.
3. Авторы ДЗ 8 как-то забыли, что в нашем курсе вообще не было мультиклассификации, а преподавателю это стало известно в конце урока 8 при выдаче ДЗ. Часть материалов о мультиклассификации выложили оперативно, а чтобы получить схема запуска hyperopt для мультиклассификации пришлось убить кучу времени на поиск информации в интернете … и только через неделю после урока удалось получить полный комплект информации.
Дальше хотелось бы учиться без таких ляпов.
Таблица сравнения
Машинное обучение
Совсем не оправданы ожидания от курса
1/5
Совсем не оправданы ожидания. Самый более мене нормальный в аналитике модуль по статистике, где преподает сам Карпов. Продуктовая аналитике — это вообще мрак и ужас. Остальной преподавательский состав — трата времени в пустую, ничего не усвоите нужного. SQL также слабо, как и другие. По АБ тестам ничего не понятно от слова совсем. Очень долгая обратная связь по домашке, можно ждать и месяц и два, даже потом не вспомнишь как делал и что. В симуляторе до кураторов вообще не достучишься с вопросами. По аналитике дают материал без обратной связи и возможности задать вопросы, а только в конце курса могут пояснить что и как, и то совсем граммы, причем когда оно уже не особо актуально. Не могу рекомендовать данный курс, как хороший.
Таблица сравнения
SQL для анализа данных
Слабая подготовка материалов
1/5
Неплохая часть курса была по Phython была в формате демо , поэтому и приобрел себе обучение. Но тут оказалось больше минусов, чем плюсов. По sql материал оказался очень слабо подготовлен, даже в бесплатном доступе море понятной информации, на неплохом уровне, чем тут. По статике — также в открытом доступе классная инфа. По визуализации тоже очень слабая подготовка.
В середине курса я принял решение уйти, не хочу такую слабую подготовку, я пришел сюда учится новым знаниям и умениям, а не слушать не интересные, а главное не особо нужный материал, на 70% состоящий из воды. Хорошо хоть возврат средств сделал. Может конкретно для этой школы такой уровень знаний — это норма, может у меня завышенные критерии оценки качества, но я не готов платить деньги в никуда. Может курс нацелен на помощь в трудоустройстве, но мне не судьба до этого было дойти на данной платформе.
Не могу давать свою рекомендации, что курс хороший.
В середине курса я принял решение уйти, не хочу такую слабую подготовку, я пришел сюда учится новым знаниям и умениям, а не слушать не интересные, а главное не особо нужный материал, на 70% состоящий из воды. Хорошо хоть возврат средств сделал. Может конкретно для этой школы такой уровень знаний — это норма, может у меня завышенные критерии оценки качества, но я не готов платить деньги в никуда. Может курс нацелен на помощь в трудоустройстве, но мне не судьба до этого было дойти на данной платформе.
Не могу давать свою рекомендации, что курс хороший.
Таблица сравнения
JavaScript-разработка
Спасибо преподавателю за отлично проведённый курс
4/5
Спасибо преподавателю за отлично проведённый курс, считаю что со своей задачей он справился на все 100%: доступно и понятно проводил вебинары, всегда отвечал на любые вопросы в telegram и вовремя проверял ДЗ с подробными комментариями. По поводу учебной программы однозначно есть недочёты. Сильно не хватает «Введения в Машинное обучение», где бы рассказывали в целом про то какие бывают модели, зачем нужны классификации, зачем регрессии, что такое обучение с учителем, что такое без, что такое переобучение, и т.д. (на courseria есть одноимённый курс от Яндекса, где на первом же уроке об этом всём рассказывают) Подходить к практическим моделям в sсikit learn без ответа на эти вопросы очень странно — как-будто ты что-то где-то пропустил, но не ясно где и что, ведь тебя обучают «с нуля».
Таблица сравнения
Big Data
Интересный курс для ознакомления с азами DS
4/5
Хороший и интересный курс для ознакомления с азами DS. Радует наличие реального проекта. Из замечаний — отсутствие методичек (как я понимаю, этот вопрос в данный момент решается), без них курс реально хромает. В теории видимо задумывалось, что интерактивные видео обучат технике, а вебинары — для работы над проектом. По факту получается, что между домашними заданиями и самим проектом огромная пропасть. Задания все на повторение и синтаксис, особой работы мысли там можно не проявлять, а проект, это полностью свободное плавание. У некоторых учеников может возникнуть ситуация, что они не понимают, что именно происходит за кадром исполняющегося кода.
Таблица сравнения
Data Science
Понравилось, но не все
5/5
Изначально хотел поставить оценку «4» преподавателю, но, как говориться, «все познается в сравнении».
Что понравилось:
— Преподаватель не оставит без внимания ни один вопрос, все домашки будут разобраны подробнейшим образом, причем это extra время (по факту каждая лекция длилась 3 часа вместо 2х);
— преподаватель показывал разные приемы, которые можно использовать в практике, охотно делился своим опытом;
— считаю программу курса достаточно сбалансированной, особенно понравились дз, они сложные (особенно для тех, у кого вообще нет опыта программирования), но только так вы будете расти;
Что не понравилось:
— почти весь курс нас сопровождали какие-то технические проблемы: то с ClickMeeting, то с окружением преподавателя (тормозит комп и тд). это реально портит общее впечатление как о площадке, так и о преподавателе
— (это скорее к формату курсов) на мой взгляд, слишком жесткие дедлайны для домашек: особенно с понедельника по четверг, людям у котрых «завал» на работе, сделать качественно дз в срок почти нереально (ну разве что ночами не спать)
Пожелания:
Мне кажется, курс «Advanced Python» нашел бы свою аудиторию, ну или «Django».
Что понравилось:
— Преподаватель не оставит без внимания ни один вопрос, все домашки будут разобраны подробнейшим образом, причем это extra время (по факту каждая лекция длилась 3 часа вместо 2х);
— преподаватель показывал разные приемы, которые можно использовать в практике, охотно делился своим опытом;
— считаю программу курса достаточно сбалансированной, особенно понравились дз, они сложные (особенно для тех, у кого вообще нет опыта программирования), но только так вы будете расти;
Что не понравилось:
— почти весь курс нас сопровождали какие-то технические проблемы: то с ClickMeeting, то с окружением преподавателя (тормозит комп и тд). это реально портит общее впечатление как о площадке, так и о преподавателе
— (это скорее к формату курсов) на мой взгляд, слишком жесткие дедлайны для домашек: особенно с понедельника по четверг, людям у котрых «завал» на работе, сделать качественно дз в срок почти нереально (ну разве что ночами не спать)
Пожелания:
Мне кажется, курс «Advanced Python» нашел бы свою аудиторию, ну или «Django».
Курс дает реальные знания по машинному обучению
4/5
Курс благодаря курсовому проекту дает реальные знания по машинному обучению. Можно с нуля научиться строить модели и даже идти участвовать в соревнованиях на kaggle. Все темы освещенные в курсе актуальны. Преподаватель хорошо освещает темы на вебинарах и дает много практики.
Единственное за что ставлю 4, а не 5 это то, что последняя тема про обучение без учителя не участвует в курсовом проекте и по ней не было практики.
Из минусов могу отметить проблемы с проверкой ДЗ. Но думаю это были временные трудности.
Единственное за что ставлю 4, а не 5 это то, что последняя тема про обучение без учителя не участвует в курсовом проекте и по ней не было практики.
Из минусов могу отметить проблемы с проверкой ДЗ. Но думаю это были временные трудности.
Таблица сравнения
Машинное обучение
Курс очень подробный, структурированный
5/5
Курс очень подробный, структурированный. Хотя понятно, что Hadoop это безграничное обучение)) Теория+практика. Преподаватель всегда рассказывал, как то или иное происходит в реальной жизни, как применяется. Не смотря на то, что с этим всем я столкнулась впервые, 90% материала было усвоено. Преподаватель старается говорить на языке группы, которую ведет. Если что то осталось непонятно, обязательно объяснит другими словами. На вопросы отвечает всегда в телеге. Домашки было делать даже интересно. После предыдущего курса (БАЗЫ ДАННЫХ ДЛЯ АНАЛИТИКОВ) этот курс просто бальзам на душу и голову)). Спасибо.
Таблица сравнения
Веб-аналитика
Очень интересный курс
5/5
Очень интересный курс, обзорно рассказано про множество практических подходов машинного обучения в бизнесе. Лектор очень хорошо объяснял, причем мы в группе на вебинарах требовали более подробного объяснения математических принципов изучаемых алгоритмов, и он очень терпеливо все объяснял, задерживаясь порой на полчаса. Из недостатков — одного урока на вывод модели в продакшн конечно маловато, причем курсовая-то как раз на эту тему. Хотелось бы более подробного рассмотрения этой темы, возможно на 2-3 урока.
Хороший, четко структурированный курс
5/5
Хороший, четко структурированный курс. Если честно, то начинала его с опасением, казалось, что все будет нудно и непонятно. По итогу все опасения не оправдались:) Преподаватель максимально последовательный и великолепно объясняющий преподаватель! Курс ооочень понятный, каждый шаг был подробно объяснен, Hadoop рассмотрен вдоль и поперек! Причем скучно не было, прослеживалась четкая структура всего курса, а в итоговом задании удалось подытожить и уложить в голове все пройденные знания. Однозначно, это заслуга преподавателя! Круто, спасибо!
Курс получился содержательным и интересным
4/5
Курс получился содержательным и интересным. Спасибо лектору за подробные объяснения и интересную подачу материала (насколько это было возможно при столь сжатых сроках). Курс довольно интенсивный и затрагивает много тем, каждая из которых во время занятия была разобрана на реальных примерах.
Есть вопрос к самой платформе : как при таком количестве студентов в потоке ( 93 ) и частотой занятий каждые 3-4 дня один преподаватель может справиться с такой нагрузкой? (проверка заданий, ответы на вопросы, консультации по итоговому проекту).
Есть вопрос к самой платформе : как при таком количестве студентов в потоке ( 93 ) и частотой занятий каждые 3-4 дня один преподаватель может справиться с такой нагрузкой? (проверка заданий, ответы на вопросы, консультации по итоговому проекту).
Для прохождения курса желательно знать основы Linux
4/5
Очень понравилась визуальная составляющая курса, в частности как устроены распределенная файловая система HDFS, DWH, Hive. Очень доступно подана информация об основах MapReduce, Hive, ETL, форматах хранения. В рамках курса даны лишь основы экосистемы Hadoop. Для более глубоких знаний необходимо самостоятельно изучать документацию. При этом по теме NoSQL о базах Cassandra и HBase дана совсем минимальная информация. Для прохождения курса надо обладать знаниями основ Linux (основные команды bash), так как работа с кластером осуществляется в консоли.
Таблица сравнения
Системное администрирование
Информации было достаточно много
4/5
Хороший курс. В целом остался доволен. Информации было достаточно много.
Из минусов можно отметить достаточно скромные возможности кластера, на котором работали, так как периодически его мощностей не хватало и приходилось ждать, когда задачи смогут исполниться. Но если брать ситуацию в целом, то работа была стабильной.
Преподаватель хорошо давал материал и очень оперативно отвечал на задаваемые вопросы.
Учитывая, что курс вводный в рамках третьей четверти, то наверно чего-то глобального добавить и не получится. Но если в принципе говорить о дополнениях и пожеланиях, то, на мой взгляд, можно больше уделить внимания работы с кластером средствами ЯП (тот же Python). Также больше внимания уделить запуску MR-задач на YARN’е (возможно больше заданий на эту тему или примеров).
Если говорить непосредственно о вводном курсе, то думаю, что в конце курса можно добавить отдельное занятие по разбору типовых проблем, которые могут возникать в процессе работы с кластером.
Остальные пожелания по углублению в работе с БД и загрузкой данных — скорее уже относятся не просто к вводному курсу, а к более объемному. Поэтому оставлю их, как говорится, «за скобками».
Но повторюсь, что наверно в рамках вводного курса — объем и информативность учебного материала вполне достаточны.
Из минусов можно отметить достаточно скромные возможности кластера, на котором работали, так как периодически его мощностей не хватало и приходилось ждать, когда задачи смогут исполниться. Но если брать ситуацию в целом, то работа была стабильной.
Преподаватель хорошо давал материал и очень оперативно отвечал на задаваемые вопросы.
Учитывая, что курс вводный в рамках третьей четверти, то наверно чего-то глобального добавить и не получится. Но если в принципе говорить о дополнениях и пожеланиях, то, на мой взгляд, можно больше уделить внимания работы с кластером средствами ЯП (тот же Python). Также больше внимания уделить запуску MR-задач на YARN’е (возможно больше заданий на эту тему или примеров).
Если говорить непосредственно о вводном курсе, то думаю, что в конце курса можно добавить отдельное занятие по разбору типовых проблем, которые могут возникать в процессе работы с кластером.
Остальные пожелания по углублению в работе с БД и загрузкой данных — скорее уже относятся не просто к вводному курсу, а к более объемному. Поэтому оставлю их, как говорится, «за скобками».
Но повторюсь, что наверно в рамках вводного курса — объем и информативность учебного материала вполне достаточны.
От курса в полном восторге
5/5
От курса в полном восторге. Впрочем, как и от преподавателя: невероятно умная женщина, которая еще и умеет объяснять. Искренне надеюсь когда-нибудь стать такой же, как она. Курс очень зашел тем, что в нем мы наконец-то отошли от сферических моделей в вакууме и стали рассматривать машинное обучение именно как инструмент для решения конкретных бизнес-задач. Курсовая работа пойдет в тест на реальных пользователях, появилось четкое видение, как решить еще одну из насущных задач. Единственный минус курса — последнее занятие. Совершенно определенно, за два часа рассказать про вывод моделей в прод просто невозможно, поэтому пришлось, как дрессированная обезьянка, дословно повторить кусок из урока для выполнения соответствующей части последнего задания. Обращаясь к организаторам обучения — очень зря убрали из программы отдельный курс по выводу моделей в продакшн, на двух поверхностных часах далеко не уедешь.
Лекции слушаются легко
5/5
Программа курса по верхам охватывает Hadoop с разных сторон. Для первого знакомства и общего развития — самое то. Как ни странно, наибольшие трудности были с первыми домашними работами, а дальше привыкаешь, и становится понятнее.
Хороший преподаватель, рассказывает не скучно, с шутками. Лекции слушаются легко. Также преподаватель всегда готов прийти на помощь студентам. В моей группе он первый преподаватель, кто создал отдельный чат в Телеграм, где собрал всех студентов текущего курса. Это очень здорово, все вопросы можно обсудить не только с преподавателем, но и с однокурсниками, так что в целом эффективность обучения немного возрастает.
Хороший преподаватель, рассказывает не скучно, с шутками. Лекции слушаются легко. Также преподаватель всегда готов прийти на помощь студентам. В моей группе он первый преподаватель, кто создал отдельный чат в Телеграм, где собрал всех студентов текущего курса. Это очень здорово, все вопросы можно обсудить не только с преподавателем, но и с однокурсниками, так что в целом эффективность обучения немного возрастает.
Подача материала отличная
4/5
Как и для любого интенсива, для прохождения этого курса нужен небольшой, но уверенный бекграунд web-разработки — знание основных понятий и практика программирования за плечами (решение абстрактных задач как минимум). Лично мне было тяжеловато, но это как бы говорит мне, что курс стоящий 🙂 Спасибо преподавателю, подача материала отличная — если что-то было непонятно во время лекции, то пересмотр трудных моментов в записи всегда расставлял «всё по полочкам». Так же отмечу хорошие методички, очень помогали по ходу курса.
P.S.: ну и с одногруппниками повезло, грех не сказать 🙂
P.S.: ну и с одногруппниками повезло, грех не сказать 🙂
Таблица сравнения
Веб-разработка
Ваш отзыв о школе
Информация обновлена: 13.04.2023

Karpov.courses является Data Science школой, предлагающей программы обучения для любого уровня подготовки. За 5 месяцев Вы можете легко освоить профессии в сфере аналитики и визуализации данных, system design и т.д. Если у Вас нет желания проходить длительные курсы, вы можете воспользоваться специально созданными симуляторами — короткие интенсивные программы до 5 недель, которые позволят вам практиковаться в решении бизнес-задач на реальной инфраструктуре. Преподаватели школы являются опытными специалистами, работающие в таких компаниях, как ВКонтакте, Яндекс и Mail.ru.
Вы являетесь представителем школы? Создайте официальный аккаунт.
Год основания
2019
Курсов
13
Преподавателей
35+
Студентов
150000+
Юридическое лицо
ООО «Карпов Курсы»
ОГРН/ОГРНИП
1217800136971
ИНН
7811764627
Генеральный директор
Карпов Анатолий Дмитриевич
Направления
Аналитика, Разработка
Курсы и профессии
Big Data, Data Engineering, Data Science, Frontend разработка, Аналитика на Python, Машинное обучение, Продуктовая аналитика
Формат обучения
Видеоуроки в записи. Школа предлагает свободный график, чат для студентов, наличие наставника
Преимущества
Наличие симуляторов – коротких интенсивных курсов до 5 недель
Профессиональные преподаватели, работающие в таких компаниях, как ВКонтакте, Яндекс и Mail.ru
Дополнительные материалы для полноценного усвоения темы
Невероятно огромное количество практических кейсов
Обучение от простого к сложному
Лично мне он помог систематизировать имеющиеся начальные знания, заполнить пробелы, освоить базовые принципы и методы работы с данными в языке Python, понять структуру написания кода на нём.
Особо хочется отметить пользу разнообразных и, зачастую, весьма интересных домашних заданий, которые не только заставляли попрактиковаться в техниках, освещенных во время лекций, но и также весьма неплохо развили навык самостоятельного поиска нужной информации в интернете, без которой, в большинстве случаев, ДЗ сделать было практически невозможно.
Преподаватель другом примере, где-то визуализировать свою речь для большей наглядности.
Немного конструктивной критики:
1. Разбор ДЗ в начале урока не обязательно делать с нуля в прямом эфире. В целях экономии времени, лучше разобрать уже готовый код кого-нибудь из учеников.
2. Регулярные выражения — на мой взгляд, не заслуживают такого пристального внимания в рамках курса.
3. Ну и последний урок по Django очень сжат. По хорошему, курс надо было продлить ещё на два-три урока, разъяснить основные принципы работы с ОРМ, MVC(Т) более детально и подробно.
В любом случае, начало положено, всё необходимое для дальнейшего саморазвития дано. Надеюсь, вскоре появиться вторая, более углубленная часть.
Спасибо за этот курс!